Topic 9 Conic Sections Review

1. Using the parabola represented by $x = \frac{1}{20}(y-1)^2 + 3$, find the Focus:

Vertex:

Directrix:

Focal length:

- 2. The cross-section of a telescope's lens is a parabola modeled by the equation $y = \frac{1}{24}x^2$, with *x* and *y* measured in inches. A mirror is located at the focus of the parabola. How many inches from the vertex of the lens is the mirror?
- **3.** Complete the square to find the vertex form of $-x + y^2 10y + 26 = 0$. Identify the vertex, focus, and directrix of the parabola.

vertex:	
---------	--

focus:	
--------	--

directrix:

4. What is an equation for the parabola with focus (0, -10) and directrix y = 10?

5. What is an equation for the parabola with vertex (0, 0) and directrix x = 4?

6. What is an equation for the circle with radius 4 and center (0, 0)?

7. What is the equation in standard form for the circle with radius 2 and center (-9, -1)?

8. What are the center and radius of the circle with the equation $x^2 + y^2 + 6x - 20y + 60 = 0$?

center: _____ radius: _____

9. Solve the system of equations. $x^2 + y^2 = 160$ y - 3x = 0

Name	enVision Algebra2
10. Find the features of the ellipse represented by the equa	PearsonRealize.com tion $\frac{(x+6)^2}{36} + \frac{(y+8)^2}{4} = 1$.

Center:	
Vertices:	Co-vertices:

The horizontal axis is ______ units and the vertical axis is ______ units long.

- **11.** What is an equation for the ellipse with foci (0, -5) and (0, 5) and vertices (0, -9) and (0, 9)?
- **12.** Graph the ellipse represented by $\frac{(x+1)^2}{16} + \frac{(y-6)^2}{4} = 1$.

8 [†] <i>y</i>	
6	
4	
2	
	X
	6

Asymptotes:

13. Identify the center, foci, and vertices of the ellipse represented by $25x^2 - 100x + y^2 - 2y + 76 = 0$.

	Center:	Foci:	Ver	tices:
14.	Find the vertices, foci, and asy	mptotes for the hyperbola	$\frac{y^2}{81}$ -	$\frac{x^2}{40} = 1$.
	Vertices:	Foci:		

Is the hyperbola horizontal or vertical?

Ν	а	m	ne
---	---	---	----

er	Vision [®] Algebra 2
	PearsonRealize.com
N	

- **15.** What are the asymptotes of the hyperbola with vertices $(\pm 3, 0)$ and foci $(\pm 6, 0)$?
- **16.** Write an equation for the hyperbola with foci (9, 0) and (-9, 0) and constant difference of 14.

18. What is the value of *A* which makes the equation $Ax^2 - 4x + 4y^2 + 7y - 100 = 0$ represent an ellipse?

19/20. Determine which conic section each equation represents.

 $-9x^{2} - 3y^{2} + 18 = 0$ $-2x^{2} + 12y^{2} + 1 = 0$ $5x^{2} - 9y^{2} + 3 = 0$ $4x^{2} + 4x + 4y^{2} - 1 = 0$ $6x - 5y^{2} - 2y + 9 = 0$