Moving from Vertex Form to Standard Form

Vertex Form: \qquad
Standard Form: \qquad

As you saw in the sorting activity, both forms can be very useful. Which form is most useful to identify the following features?

The vertex The y-intercept Direction/width

Today we will be converting equations from vertex form to standard form. This is really just using skills you already have!

Review:

1. Multiply $(x-2)^{2}$
2. Simplify: $(x-5)^{2}+7$
3. Simplify: $4(x+3)^{2}$

These are the only skills you'll need for moving a quadratic function from vertex to standard form.
For each of the following, write in standard form and identify the important features.
4. $f(x)=(x-3)^{2}+5$

Vertex (__ \quad _ $)$
y-intercept: \qquad
Upward or Downward facing?
Axis of Symmetry:
5. $f(x)=3(x-9)^{2}+10$

Vertex (\qquad , \qquad)
y-intercept: \qquad
Upward or Downward facing?
Axis of Symmetry:
6. $f(x)=-(x+4)^{2}-3$

You Try!
Match groups of 6:
Vertex Form Standard Form Vertex y-intercept Axis of Symmetry Graph

Vertex Form

Standard Form

$y=2 x^{2}+16 x+26$	$y=-x^{2}-10 x-13$
$y=2 x^{2}-4 x-1$	$y=x^{2}-12 x+44$

Vertex

$(1,-3)$	$(-5,12)$
$(6,8)$	$(-4,-6)$

y-intercept

26	-1
-13	44

Axis of Symmetry

$x=-5$	$x=-4$
$x=6$	$x=1$

Graphs

