9-1 Additional Practice

Parabolas

Write an equation for a parabola given the focus and directrix.

1. focus $(0,4)$ and directrix $y=-4$
2. focus $(3,0)$ and directrix $x=-3$
3. A parabola has a focus of $(-2,0)$ and directrix at $x=2$.
a. What is the vertex of the parabola?
b. Is the equation in the form $y=a x^{2}$ or $x=a y^{2}$?
c. What is the focal length?
d. What is the equation of the parabola?

What is the equation of each of the parabolas shown?
4.

5.

6. A TV satellite dish has the shape of a parabola modeled by the equation $x=\frac{1}{120} y^{2}$. The satellite dish has a sensor at its focus. Using the graph of the equation and assuming the base of the dish, or vertex, is positioned at the point $(0,0)$, at what coordinates would the sensor be placed?
7. Complete the square to identify the vertex, focus, and directrix of the parabola with the equation $0=-y+x^{2}-6 x+2$.
8. What is the value of c for the parabola $x=\frac{1}{10}(y+6)^{2}+2$? Explain.
9. The midpoint of a pipe with a diameter of 0.5 in . is located 10 in . from a mirror with a parabolic cross section used as a solar collector. The midpoint of the pipe is at the focus of the parabola. Write an equation to model the cross section of the mirror.

